Know more

About cookies

What is a "cookie"?

A "cookie" is a piece of information, usually small and identified by a name, which may be sent to your browser by a website you are visiting. Your web browser will store it for a period of time, and send it back to the web server each time you log on again.

Different types of cookies are placed on the sites:

  • Cookies strictly necessary for the proper functioning of the site
  • Cookies deposited by third party sites to improve the interactivity of the site, to collect statistics

Learn more about cookies and how they work

The different types of cookies used on this site

Cookies strictly necessary for the site to function

These cookies allow the main services of the site to function optimally. You can technically block them using your browser settings but your experience on the site may be degraded.

Furthermore, you have the possibility of opposing the use of audience measurement tracers strictly necessary for the functioning and current administration of the website in the cookie management window accessible via the link located in the footer of the site.

Technical cookies

Name of the cookie


Shelf life

CAS and PHP session cookies

Login credentials, session security



Saving your cookie consent choices

12 months

Audience measurement cookies (AT Internet)

Name of the cookie


Shelf life


Trace the visitor's route in order to establish visit statistics.

13 months


Store the anonymous ID of the visitor who starts the first time he visits the site

13 months


Identify the numbers (unique identifiers of a site) seen by the visitor and store the visitor's identifiers.

13 months

About the AT Internet audience measurement tool :

AT Internet's audience measurement tool Analytics is deployed on this site in order to obtain information on visitors' navigation and to improve its use.

The French data protection authority (CNIL) has granted an exemption to AT Internet's Web Analytics cookie. This tool is thus exempt from the collection of the Internet user's consent with regard to the deposit of analytics cookies. However, you can refuse the deposit of these cookies via the cookie management panel.

Good to know:

  • The data collected are not cross-checked with other processing operations
  • The deposited cookie is only used to produce anonymous statistics
  • The cookie does not allow the user's navigation on other sites to be tracked.

Third party cookies to improve the interactivity of the site

This site relies on certain services provided by third parties which allow :

  • to offer interactive content;
  • improve usability and facilitate the sharing of content on social networks;
  • view videos and animated presentations directly on our website;
  • protect form entries from robots;
  • monitor the performance of the site.

These third parties will collect and use your browsing data for their own purposes.

How to accept or reject cookies

When you start browsing an eZpublish site, the appearance of the "cookies" banner allows you to accept or refuse all the cookies we use. This banner will be displayed as long as you have not made a choice, even if you are browsing on another page of the site.

You can change your choices at any time by clicking on the "Cookie Management" link.

You can manage these cookies in your browser. Here are the procedures to follow: Firefox; Chrome; Explorer; Safari; Opera

For more information about the cookies we use, you can contact INRAE's Data Protection Officer by email at or by post at :


24, chemin de Borde Rouge -Auzeville - CS52627 31326 Castanet Tolosan cedex - France

Last update: May 2021

Menu Logo Principal AgroParisTech Université de Lorraine UMR SILVA

Home page

Plasticity in leaf litter traits partly mitigates the impact of thinning on forest floor carbon cycling

17 May 2019

Henneron, L. ; Chauvat ; Archaux, F. ; Akpa‐Vinceslas ; Bureau ; Dumas ; Ningre, F. ; Richter, C. ; Balandier ; Aubert
Functional Ecology, 2018, 32 (12) : 2777-2789.
Reducing stand density by thinning intensification has been emphasized as an efficient strategy of forest adaptation to climate change as it improves stand resistance to drought. Yet, it is still unclear how it could affect litter carbon (C) cycling processes. Recent evidence indicates that the plasticity of an oak tree species can lead to a decline in its leaf litter quality and decomposability following thinning. The consequences for litter decomposition and forest floor C storage at the ecosystem scale remain largely unexplored. In this study, we took advantage of a regional-scale, multi-site network of long-term thinning experiments in temperate oak (Quercus petraea) forests to address this issue. We measured ecosystem properties related to forest floor C cycling in 19 plots across eight experimental sites covering a large gradient of stand density and age. Though we expected thinning to affect in situ litter decomposition by altering oak leaf litter quality, we conducted complementary experiments exploring additional mechanisms, that is alterations of microenvironmental conditions and soil faunal activity. Thinning intensification induced a strong decline in tree canopy leaf area index, above-ground tree litter production and forest floor decomposition rate in early "aggradation" stage of forest development. This slower litter decomposition was mainly driven by plasticity of oak trees that produced leaf litter of poorer quality and decomposability following thinning, for example, litter richer in secondary metabolites such as condensed tannins. Change in microenvironmental conditions also contributed to the slowdown of litter decomposition, likely as a result of the less buffered microclimate associated with larger tree canopy opening. No change in soil faunal effect induced by thinning was observed. Thinning intensification resulted in a limited decrease in forest floor C stock. Indeed, the slower litter decomposition offset nearly half of the forest floor C loss associated to the reduced litterfall in "aggradation" stage. Our study demonstrated that phenotypic plasticity in leaf litter traits of a dominant tree species can strongly affect ecosystem functioning by slowing forest floor decomposition following thinning intensification, in turn partly mitigating the negative effect of thinning on forest floor C storage.